skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ravishankar, Eshwar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Greenhouses conserve land and water while increasing crop production, making them an attractive system for low environmental impact agriculture. Yet, to achieve this goal, there is a need to reduce their large energy demand. Employing semitransparent organic solar cells (OSCs) on greenhouse structures provide an opportunity to offset the greenhouse energy needs while maintaining the lighting needs of the plants. However, the design trade-off involved in optimizing solar power generation and crop productivity to maximize greenhouse economic value is yet to be studied in detail. Here, a functional plant growth model is integrated with a dynamic energy model that includes supplemental lighting to optimize the economics of growing lettuce and tomato. The greenhouse optimization considers 64 different OSC active layers with varying roof coverage for 25 distinct climates providing a global perspective. We find that crop yield is the primary economic driver, and that crop yield can be maintained in OSC-greenhouses across diverse climates. The crop productivity along with the energy produced by the OSCs results in improved net present value of the OSC-greenhouses relative to conventional systems in most climates for both lettuce and tomato. In addition, we find common solar cell active layers that maximize greenhouse economic value resulting in guidelines for scaling up OSC-greenhouse design. Through this model framework, we highlight the opportunity for OSCs in greenhouses, uncover designs and locations that provide the most value, and provide a basis for further development of OSC-greenhouses to achieve a sustainable means of food production. 
    more » « less
  2. null (Ed.)
  3. Abstract Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production across Arizona to be $3.43, $3.38, and $3.64 per kg of tomato for the conventional, adjacent PV and SPRING system, respectively. 
    more » « less